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1 Introduction and Background Information

1.1 Overview of Problem to Solve

This project will be focused on applying techniques from the research paper Dynamic
Mode Decomposition for Real-Time Background/Foreground Separation in Video, by J.
Grosek and J. N. Kutz [1], to perform foreground-background separation on a five minute
long surveillance video from the VIRAT video dataset sample release.

Foreground-Background separation is a method that is specifically meant to be used
on video footage that has a non-moving background and a moving section that is referred
to as the foreground. Footage of this sort, such as that taken by non-moving security
video cameras, can be processed through this method to clearly separate the moving
parts, such as the people and cars(foreground), from the non-moving parts, such as

Joshua Herman 2 MATG 511: Prof. L. Udeigwe



sidewalks, buildings, the sky (background). Foreground-Background Separation is nec-
essary in various machine learning project pipelines, as the separation of moving objects
from static background may be a good starting point for a project that demands the
classification of moving objects; in order to classify individual moving objects, one may
find it useful separate those objects from the background. Then other machine learning
tools can be used to separate the individual parts from each other and perhaps a sliding
windows technique could be used to do so.

1.2 Connection to related work

The Foreground-Background Separation technique implementation is in large part be an
attempt at recreation of the results detailed in the research paper by J. Grosek and J.
Kutz [1].

2 Methods

2.1 Explanation of the mathematical tools employed

The method to be used for each of the topics addressed in this proposal is Dynamic
Mode Decomposition (DMD), whose derivation is given in section 3.1 of the research
paper previously mentioned by J. Grosek and J. Kutz [1]. The derivation won’t be dealt
with here, as the paper gives a pretty intuitive summary.

The problem that DMD is most directly trying to solve is to find a simplified model
representation of a timeseries that is decomposable into a set of mode functions, using
the tools of linear algebra. Let there be time series, which in this case is a series of m
ordered n dimensional vectors xi , where i=1,2,...,m. The vectors ~xi i=1...m-1 can be
collected into a matrix X and ~xj j=2...m can be collected into a matrix X̄.

To find a model for the data, several steps must be taken. These steps are taken from
the November 11 2019 Lecture taught by L. Udeigwe [4]. The list is below as follows:

1. Singular Value Decomposition This is used to convert X into a set of unitary and
diagonal matrices:

X = UΣV ∗

where the dimensionality is changed to:

U = U(n×l),

Σ = Σ(l)×(l),

V = V(m−1)×(l).

2. We then calculate
A = U∗X̄V Σ−1.
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3. Perform eigenvalue decomposition on A, to get W and Λ such that

AW = AΛ

where Λ is diagonal. Note the dimensionality

Λ = [Λ]r×r.

4. We then calculate
Φ = X̄V Σ−1W.

We then find
B = Φ+~x0

, where we just introduced the pseudoinverse operator +,

X+ = (X∗X)−1X∗.

Now we have our solution:
~xi = ΦΛi−1B

. Our Matrices can be written in terms of individual components:

Φ = [~φ1, ..., ~φr].

B = [b1, ..., br]
T .

, and
Λ = diag([λ1, ..., λr]).

. Rewriting our solution in component form, we have:

~xi =

r∑
j=1

φjλ
i−1
j bj .

Our frequencies are
ωj = log(λj)/∆t

, where ∆t is the time between consecutive vectors ~xi.
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2.2 Application to Project

In this project, the video data will be converted into several Xfull matrices where each
column contains the image information of a separate frame. The frames are assumed to
be equally spaced in time. The DMD method thus takes

Xfull = [~x1, ...., ~xm]

as its input and returns Φ,Λ, and B, where approximately

~xi = ΦΛi−1B.

The time multipliers are
Λ = diag([λ1, ..., λr])

. Ourfrequencies are
ωj = log(λj)/∆t

. Note that these are all complex valued. Our Solution in component form

~xi =
r∑
j=1

φjλ
i−1
j bj ,

is a dynamic mode decomposition. The jth mode is

φjλ
i−1
j bj = φjexp[ωjt]bj .

It is very evident that λj (or ωj) is the term from the individual mode that is solely
responsible for the jth mode’s dynamic behavior. Thus it can be called the frequency
term. The vector φj is the only vector term in the mode. This can be though as the
shape of the mode, and it determines the static behavior of its associated mode. The
coefficient term bj is just a weighting factor of sorts, that takes into account the initial
condition.

Each mode can be thought of as a separate video or picture that evolves with time,
where the sum of all modes at an instant yields the original picture at that instant.
The mode that evolves the least in time is the mode that represents the most stationary
video from the set. This mode is the mode whose continuous frequency magnitude ||ωj ||
is smallest. The rest of the modes are more representative of the more dynamic parts
of the video. Sorting the modes by order of increased frequency magnitude will done
in the analysis. The mode with index k that has the smallest ||ωk|| will be dubbed as
the background due to its being the least dynamic, while the rest of the modes can be
considered part of the foreground due to their being more dynamic. This reasoning was
explained in Section 3.2 P2 of the paper by J.Grosek. [1].Thus the foreground modes
will be added together to produce the foreground images, while the background mode
will be used to produce the background image. Note that only the real component of
the pixel values will be considered. Also, the 256 mod of the sum of the real values will
be taken, to make sure all pixels are confined to a readable pixel range[1].
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2.3 Description of Dataset

The dataset to be considered is a several minute long surveillance video file from the
VIRAT Video Dataset, which is described on its associated website as being a benchmark
dataset for surveillance video tasks in computer vision.[3] The Sample of Release 1 of
the dataset will be used[2]. The file is called, VIRAT S 000002 sizesmall.mp4 and it is
a 270MB file whose video has a time duration of 5 minutes and 2 seconds, a frame rate
of 29.97 frames per second. Its resolution is 1920 by 1080, it has 3 color channels, and
has a total of 9075 frames.

This particular surveillance video shows footage of a camera fixed on an outdoor
parking lot to the side of a building. The background is completely still, but a few
people and objects are occasionally moving around. These few people and objects that
move around are referred to as the foreground. At the beginning of the footage, several
people slowly walk toward the side of a building toward the back of the parking lot.
Then a little later a car drives up and parks in the back. Other people then enter the
scene and one of them is rolling a wheel barrel as they walk toward the car. Then the
trunk opens and an object is put into the wheel barrel. Then they close the trunk and
as the car drives away most of the people disperse and the guy with the wheel barrel
walks off screen. Several guys still wait near the back of the parking lot.

Figure 1: Surveilance Video VIRAT

2.4 Preparation of your data set

There are three main steps used to preprocess the surveillance video file into sets of
matrices that are DMD ready.

1. Convert to downgraded Images

2. Convert Images to Single Matrix
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3. Down Sample the number of matrix columns and collect them into subsets of 30
column matrices.

2.4.1 Convert to images

Python video and photo processing packages will be used to complete this step. This
step entails having the mp4 file’s frames decolorized, and resolution reduced and saved
with sequentially numbered file names.

1. The library pims is used to conveniently load individual frames through numpy like
indexing. Each frame will then be converted to an numpy array. The dimensions
of each image array extracted are (1080,1920,3) or (H,W,C) where H is height, W
is width, and C is color.

2. The package cv2 will be used to process the arrays to reduce dimensionality, which
will greatly simplify DMD analysis. Downscaling the image to grayscale decreasing
the resolution by a factor of 10 yields a new picture with a lower dimensionality of
(108,192). The process of downscaling is rationalized in the paper by J.Grosek and
J.N.Kutz [1] states in Section 4.1 P1 that downsizing the original images and con-
verting them to grayscale was done in their DMD data processing of select videos
from the Advanced Video and Signal based Surveillance, was done for the pur-
pose of making the ”computational memory requirements manageable for personal
computers.” Then cv2 is used to save the image.

Figure 2: Extracted Photo Frame 0
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Figure 3: Extracted Photo Frame 6000

2.4.2 Convert images to numpy matrix

The Skimage.io package will be used to collect all of the images, and concatenate them
into a 2D array that can be saved as a csv file, where each column is a different vectorized
image. The (Number of Pixels, Number of frames).

2.4.3 Frame Selection and Grouping

The goal here is to create arrays that are primed and ready to be immediately inserted
into the DMD algorithm. Section 4.1 P2 of the paper by J. Grosek and J.N Kutz [1] states
that their preprocessing involved splitting the video stream into sets of 30. However, in
my own analysis it turned out that the frame rate also had to be reduced, in order for
the time interval that is spanned by the set of 30 frames to not be too small to contain
noticeable motion. Since the frame rate is 29.97 frames per second, down sampling the
number of frames by a factor of 30 would be essential, in order for a full 30 seconds
worth of motion to be captured in each set of 30 frames. Thus a new array is created
containing only every 30th vectorized image from from the saved array. Then this new
array will be split into a sets of 30 vectorized images, which will be referred to as the set
of arrays Xfull1, Xfull2, etc. Each of these arrays are now ready to directly entered into
the DMD algorithm, whose results are directly in the form of the three arrays: Φ,Λ, B.
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Figure 4: Data Preparation Visual

3 Results

There were 9075 images originally extracted. Then every 30th frame was picked out.
The resulting 1/30th of them were split into 10 sets of 30 images. Each of the 10 sets
were fed into the DMD algorithm. The plots of frequency and extracted images can be
seen below.

3.1 Plots for Magnitude and Phase of Frequency ω

For each set, there is a plot below that shows the frequencies for each mode, scatter
plotted in terms of magnitude and complex phase.

Figure 5: Plot of Set 4
Magnitude and Phase of Frequency

These Plots provide a good benchmark for choosing which mode is foreground vs
background. Since the real part of the frequency is responsibble for exponential growth
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and decay, while the imaginary part is repsonsible for the oscilatory motion, one quick
metric is to take the absolute value of the frequency so that both forms of dynamic
behavior can be evaluated at once. Thus, following the above plot on the left, we see
that mode 0 has the smallest magnitude of frequency which is zero. This implies no
exponential nor oscilatory behavior. Thus we have a good condidate for the background
mode. In the process used for automating the background foreground separation in
this project, the absolute value (magnitude) of the frequency ωj is this benchmark. We
automaticaly pick the mode with smallest magnigude as our background mode. The
rest of them are summed to attain a model of the foreground, which is supposed to have
dynamic behavior. The phase of ω is mostly irrelevent in this project, since it doesn’t do
more than give a glimpse into how much of the frequency is imaginary and how much is
real. Based on the phase plot, it would seem that all but the first mode have primarily
imaginary frequency, since the phase is close to +-90. This implies that these modes
have primarily oscilatory behavior as opposed to exponential behavior, though that may
still be misleading as to how insignificant the exponential decay aspect is.

3.2 Plots for Full recomposed image, Background, and Foreground

For each set, there is a stacked plot below that shows different versions of the set’s middle
recomposed image. The top version is the full recomposed one, the middle one is the
background, and the bottom one is the foreground.
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Figure 6: Plot of Set 4
Full,Background,Foreground Images
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Above we can see three reconstructed images for the 16th frame of set 4, the first
being the fully recomposed one that includes all modes, the second being only the back-
ground mode, and the third being the sum of the foreground modes. As se can see,
The Foreground contains several people and part of the trunk of a car. The background
contains a car, but with a small piece missing and no peole standing directly around it.
The full image contains all of these people and all of the car. Thus there is sucess in this
particular implimentation.

Below is the background picture for set 4. Also, below is the foreground for frames
156 to 172 (out of 300), which correspond to part of set 4. You can see how the car
gradualy drives away and shrinks out of view.

Figure 7: Background Picture 152

Figure 8: Foreground Picture 156
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Figure 9: Foreground Picture 157

Figure 10: Foreground Picture 158

Figure 11: Foreground Picture 159
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Figure 12: Foreground Picture 160

Figure 13: Foreground Picture 161

Figure 14: Foreground Picture 162
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Figure 15: Foreground Picture 163

Figure 16: Foreground Picture 164

Figure 17: Foreground Picture 165
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Figure 18: Foreground Picture 166

Figure 19: Foreground Picture 167

Figure 20: Foreground Picture 168
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Figure 21: Foreground Picture 169

Figure 22: Foreground Picture 170

Figure 23: Foreground Picture 171
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Figure 24: Foreground Picture 172

4 Analysis of Redone Results

This time around the process of datapreparation and DMD are redone, but only consid-
ering the top right corner of the image near the parking lot entrance

Figure 25: Split video into 9 sections. Pick top right, outlined in red.

We perform all of the same steps as before, but downsample to include every 15
frames, to reduce the frame rate to 2FPS. We will mainly consider analyzing individual
modes using complex analysis that result from Dynamic Mode Decomposition being
performed only on that one section.

First, some essential math will be briefly discussed. The kth mode is

~φkλk
n−1bk.

This mode can be broken down into the product of an amplitude, exponential, and
oscilatory term using complex analysis. Noting how for any complex vector α,

α = |α|ei∗Phase(α) = |α|cis(Phase(α)).

Below is a mathematical manipulation of the mode to into magnitude times phase
format.

~φkλk
n−1bk = |bk~φk||λk|n−1exp(i ∗ [Phase(bk~φk) + (n− 1)Phase(λk)])
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= |bk~φk||λk|n−1cis([Phase(bk~φk) + (n− 1)Phase(λk)])

The real component is the only component of the pixel values that we consider when
recomposing the image. Below is the real component of the mode.

<(~φkλk
n−1bk) = |bk~φk||λk|n−1cos([Phase(bk~φk) + (n− 1)Phase(λk)]).

We can see that bk~φk|λk|n−1 is the amplitude of the cosine wave at frame n, while
[Phase(bk~φk) + (n− 1)Phase(λk)] is the angle of that wave at frame n.

We can see that the equation for the value of the vector of pixels in mode k is an
exponentialy decaying cosine wave.

1. The term |λk|n−1 causes the wave amplitude to be multiplied by a factor of |λk|
when n increases by 1, assuming |λk| < 1. Thus this paper will refer to |λk| as the
Pixel time Multiplier.

2. The term |bk~φk| is the amplitude when n = 1. Thus we will call it the pixel
amplitude.

3. The term (n− 1)Phase(λk) is the term that produces oscilations by increasing the
wave angle by Phase(λk) when n increases by 1. Thus we will refer to it the pixel
complex frequency. This term is in radians.

4. The term [Phase(bk~φk)] is the term that gives the cosine wave its initial angle
when n = 1. The angle will be expressed in radians.

Figure 26: The four terms that characterize an individual mode

Now we will discuss a visualiation of the breakdown of Mode 0 from Set 8 into these
four parts. Below are figures 27 and 28, which will give a visualization of the first 2
items (Amplitudes) from list 26 mentioned above:

Figure 27: Mode 0 Set 8 Magnitude Heat Map
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Figure 27, contains two plots. On the left is the pixel amplitude plot corresponding
to the term in 26 term 2. This term is a vector, and it is called the pixel amplitude.
which when reshaped to the dimensions of a picture and plotted on a heatmap, yields a
picture of the parking lot.This picture just from inspection looks like a good candidate
for the background mode. This particular colloring was used for ensuring visible color
contrast. The bar on the right points out what the number values are for List item 2. We
can see that the values run from 0 to around 255. To the right of the plot is a heatmap
of the pixel time multiplier , which shows the pixel time multiplier to be 1. From these
two pieces of information, it must be that Mode 0 of set 8 has a constant amplitude for
each pixel.

Figure 28: Mode 0 Set 8 Phase Heat Map

Figure 28 contains a plot on the left, which is list item 44, of each pixeĺs starting
angle, or phase. Figure 27 contains a plot on the right, which is of the pixeĺs frequency3,
which will increase the pixeĺs angle by the frequency each time n increases by 1. As can
be seen, the phase and frequency are both zero, meaning that this mode doesn’t oscilate
at all the cosine part of the mode equals 1. This proves that The equation for the pixels
will thus only be |bk~φk|.

Below are figures 29 and 30, which show the same kind of information for Mode 3 of
set 8.
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Figure 29: Mode 3 Set 8 Magnitude Heat Map

The plot on the left of figure ?? shows the initial amplitudes, which as you can see
shows sihloutes of people on it, with pixel values in the 200s when looking at the bottom
left corner. When moving upward diagonaly from that corner, the silhoutes move to
lower pixel values. The Right Plot shows that the pixel time multiplier is 0.77, thus
meaning that the pixel values are multiplied by 0.77 each time n increases by 1.Doing
some simple math .7718 = 0.009 Thus by the 19th out of 30th frame, the picture will
become close to irrelevent. This of course doesn’t take into account the cosine function,
which will be discussed next.

Figure 30: Mode 3 Set 8 Phase Heat Map

In plot 30, we can can see on the left the starting angle for each pixel, and we can
see at the bottom left there are silhoetes that have a phase of near 0. Thus it seems
apparant that this specific mode may at in its first frame be a significant contributer to
the foreground. The frequency is 0.24, which causes an increase in angel by 0.24 each
time n increases by 1. Moving forward 7 frames will increase the phase by around 1.68,
which is around π/2. , which is 1 quarter of a cycle. Within this cycle, all angles will
reach a point where cosine be near zero. Thus the pixels will turn off and on depending
on what their starting phase is. We can infer that the dark blue silhoutes in the phase
heatmap will become close to zero in pixel value by frame 8, and by frame 15 when cosine
becomes close to -1, we will also have an original amplitude multiplied by (.77)14 = 0.03.
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Thus the pixels will have negative values that are close to negligible. Also, the mod 256
function will be used to turn these pixels into positive values, which will actualy cause
the negligible negative value to be treated as a large positive value, although the mod
operation is only considered after all of the modes are summed. In future attempts may
want to consider an alternative method of dealing with out of range values.

Now we will show the frequency mode diagram for all modes in Set 8

Figure 31: FreqPlot-Set8

In figure 31, we on the left have the mode frequencies, or Phase(λk), while on the
right we have the mode amplitude multipliers |λk|, plotted for the kth mode. The plot
on the left shows that for k = 0, the frequency is zero, while the plot on the right shows
that for k = 0, the amplitude mutiplier is 1. Thus this mode is unchanging, and is
consistant with our previous inference of mode 0 being the background mode. However,
all other modes have a nonzero frequency and a nonunity amplitude multiplier. So all
other modes are dynamic, and thus are considered foreground.

To conclude, the frequency gives an idea of how fast the pixels oscilate, the amplitude
multiplier gives us a clue of the exponential decay rate.

4.1 Additional Complex Analysis Concerns.

One small detour will be discussing why breaking the frequency ω into magnitude and
phase has limited usefulness in analysis.

λj = exp[ωj ∗∆t]

= |λj | ∗ cis(Phase(λj)) = exp(|ωj |∆tcis(Phase(ωj)))

= exp[∆t ∗ |ωj |cos(Phase(ωj))] ∗ cis(sin(Phase(ωj))
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You can see that the equation is verry unwieldy; we have λ in a form such that it contains
its phase twice inside of two double functions. There is no way to get |λj | back from
these terms. Thus, make sure to not overintepret values for the phase and magnitude
of ω. However, considering that if the Phase(ωj) is zero, then la λj = exp[∆t ∗ |ωj |]. If
|ωj | = 0, then λj = cis(sin(Phase(ωj)) We can see that these relations don’t give too
much information, and that the magnitude of omega gives the most useful information.
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